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The classical quasi-geostrophic model in an active layer with an arbitrary vertical
structure is modified by adding a boundary condition at the interface with a passive
(motionless) lower layer: the difference between isopycnal and interface elevations is a
Lagrangian constant, so that a particle in this boundary remains there and conserves
its density. The new model has the appropriate integrals of motion: in particular,
a free energy quadratic and positive definite in the deviation from a state with a
uniform flow, made up of the internal and ‘external’ potential energies (due to the
displacement of the isopycnals and the interface) and the kinetic energy.

Eady’s model of baroclinic instability is extended with the present system, i.e. in-
cluding the effect of the free lower boundary. The integrals of motion give instability
conditions that are both necessary and sufficient. If the geostrophic slope of the
interface is such that density increases in opposite directions at the top and bottom
boundaries, then the basic flow is nonlinearly stable. For very weak internal stratifi-
cation (as compared with the density jump at the interface) normal modes instability
is similar to that of a simpler model, with a rigid but sloping bottom. For stronger
stratification, though, the deformation of the lower boundary by the perturbation
field also plays an important role, as shown in the dispersion relation, the structure of
growing perturbations, and the energetics of the instability. The energy of long grow-
ing perturbations is mostly internal potential, whereas short ones have an important
fraction of kinetic energy and, for strong enough stratification, external potential.

1. Introduction
Eady (1949) showed how the potential energy associated with the geostrophic

isopycnal tilt can be used to generate variability in scales not present in any forc-
ing, through the process of baroclinic instability. Eady used the simplest possible
setting: a quasi-geostrophic model with uniform stratification N2 and constant basic
shear ∂zU as well as rigid horizontal boundaries. Eady’s model is not appropriate
for the real ocean, where most variability is concentrated near the surface. One
possible improvement consists in using non-uniform N2 (z) and U ′ (z), as done by
Gill, Green & Simmons (1974). Another possibility, somewhat simpler, is to con-
sider a shallow active layer floating on top of a denser and (assumed) motionless
fluid. This ‘reduced gravity’ structure is admittedly only a crude representation of
the ocean which, nevertheless, has been used extensively with significant success. The
f-plane baroclinic instability problem has been reformulated with reduced-gravity
models, but assuming a limited vertical structure, by Young (1994), Young & Chen
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(1995), and Ripa (1995). On the other hand, Fukamachi, McCreary & Proehl (1995)
and Beron-Vera & Ripa (1997) discuss the linear instability problem making no
assumptions on the vertical structure of the perturbations. A variable Coriolis pa-
rameter (β-effect) was considered by Ripa (1999b), assuming that the perturbation
streamfunction has a linear structure with depth, and by Olascoaga & Ripa (1999)
with a 2 1

2
-layer model, i.e. allowing for a free lower boundary in the problem of

Phillips (1954). In Ripa (1999b) there is a table showing the different regions of
parameter space covered by the works mentioned above as well as the present one;
Pierrehumbert & Swanson (1995) give a general review of the subject of baroclinic
instability. Both a free boundary and β 6= 0 introduce important differences with the
results of Eady (1949), in particular larger growth rates and the interplay of two
horizontal length scales. The motivation for our papers is to understand the physical
origin of these differences. Since the instabilities found by Fukamachi et al. (1995)
and Beron-Vera & Ripa (1997) are of low frequency, a quasi-geostrophic model with
a free boundary is developed here, a system that simplifies the study of the nonlin-
ear aspects of the problem (such as the energetics of the instability and saturation
of perturbations). A layered quasi-geostrophic model with a reduced-gravity lower
boundary condition is presented in Ripa (1992c) – and used by Olascoaga & Ripa
(1999), but in that system each layer has uniform density. The model developed
here, on the other hand, not only has an arbitrary vertical structure but it also
supports non-isopycnal upper and lower boundaries, allowing for the future inclusion
of buoyancy flux through the model boundaries, which is a crucial component of
mixed-layer dynamics and ocean–atmosphere interactions (Haine & Marshall 1998).
Achterberg & Ingersoll (1989) have used a similar model (with a different lower
boundary condition, though) to study Jupiter’s atmosphere.

Model equations are developed in § 2; the only difference with the classical three-
dimensional quasi-geostrophic model, e.g. that of Gill et al. (1974), is the presence
of the freely moving interface, which separates the active and passive layers. The
Hamiltonian structure of the model, shown in this section, is used in Ripa (1999a) for
the derivation of a few-component approximation, using the method of Meacham,
Morrison & Flierl (1997).

The generalization of Eady’s baroclinic instability problem, with the addition of a
free lower boundary and in the f-plane, is addressed first in § 3 using the integrals
of motion to derive sufficient stability conditions. These are similar to those found
by Mu et al. (1994) for Phillips’ problem, namely a short-wave cutoff, function of the
parameters of the problem. However, these parameters are different in the two cases:
the stratification s and slope ν for this paper and Charney’s b number for Phillips’
model (all three parameters are defined in § 3). In addition, nonlinear stability is easily
proved for ν > 1, whereas finite-amplitude bounds to the growth of both the total and
zonal perturbations for the ν < 1 cases are presented in Ripa (1999a); these bounds
are satisfied by the few-components model developed in that paper. The analogy with
Phillips’ problem is stability |b| > 2 and the bounds derived by Shepherd (1988, 1993)
for |b| < 2. In Ripa (1999b) and Olascoaga & Ripa (1999) all three parameters (s, ν, b)
come into play as independent variables.

The normal modes analysis done by Beron-Vera & Ripa (1997) for the f-plane
case is extended to the whole parameter space in § 4. The parameters for the onset
of spectral instability coincide with those found in § 3 from the integrals of motion.
The physical origin of the differences between Eady’s problem and the present one
are investigated here (e.g. the effect of the interface slope and its rigidity). The linear
analysis has been further extended in Ripa (1999c), where it is shown, in particular,
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Figure 1. Vertical structure of the model. The dotted lines indicate isopycnals. The (constant-density)
lower layer is motionless. The definitions of the isopycnal displacement ζ and layer depth h are
shown on the right. Model equations are depicted on the left, where q is the potential vorticity.

that the growth rate enhancement produced by the β-effect reported in Ripa (1999b)
and Olascoaga & Ripa (1999) is not due to the limited vertical resolution of these
models but, rather, it is a general result, also present in the continuously stratified
model developed here. The modified quasi-geostrophic model derived by White (1977),
which incorporates non-Boussinesq effects, is formally similar to the present one at
the lower boundary; the differences between the two models are also clarified in this
section.

The a priori and linear analysis of §§ 3 and 4 is completed with the study of small-
amplitude nonlinearities of the problem in § 5, where the energetics are discussed.
Classification of instabilities in terms of energy transfers (between the mean flow and
a growing perturbation) is completely misleading with primitive equation models,
for which the perturbation energy may have any sign, depending on the variables
and coordinates chosen to describe the problem. For instance, in Kelvin–Helmholtz
instability the energy of a growing perturbation is positive if depth is used as an
independent variable or zero if, instead, density is the vertical coordinate (Ripa
1990). However, this is not the case for quasi-geostrophic theory, for which the
difference between the two types of vertical coordinates is, by assumption, irrelevant,
and perturbation energy is positive definite. The form of a growing wave and its
rectification, discussed in this section, led to the formulation of the minimal nonlinear
model reported in Ripa (1999a).

The conclusions are presented in § 6. The Appendix gives the details of the derivation
of the streamfunction from the boundary density and interior potential vorticity fields,
for the particular case of a channel. Part of the pressure and velocity fields associated
with a vanishing along-channel wavenumber k has the form of k = 0 Kelvin waves;
this is interesting in view of the presence of long Kelvin waves in other balanced
models (Kushner, McIntyre & Shepherd 1998).

2. Model equations
The first goal of this paper is to develop a subinertial model of an active layer

of fluid (in −h (x, t) 6 z 6 0) lying on top of a motionless layer (z < −h (x, t))
with constant density ρdeep (see figure 1). The structure is similar to that of a 11

2
-

layer or 1-layer reduced-gravity model, except that all dynamical fields (density ρ,
velocity (u, w), and kinematic pressure ptotal) are allowed to have arbitrary vertical
(as well as horizontal and temporal) variations within the active layer. Let ϑ =
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g
(
ρdeep − ρ (x, z, t)

)
/ρ0 be the buoyancy relative to the passive layer, where ρ0 is

a constant density used in the Boussinesq approximation. Instead of ϑ (x, z, t) it is
convenient to use the vertical displacement ζ (x, z, t) , defined by ϑ = Θ(z − ζ) for
−h 6 z 6 0 (and, of course, ϑ = 0 for z < −h), where Θ (z) is some reference profile
such that N2 (z) := dΘ(z)/dz > 0. Density conservation Dρ/Dt = 0 is equivalent to
D (z − ζ) /Dt = 0, giving the vertical velocity as w = Dζ/Dt, which in particular must
vanish at the (rigid) upper boundary, z = 0. The interface is also a material surface
(no entrainment of lower fluid is considered at this time), i.e. D (z + h) /Dt = 0 at
z = −h. Consequently, exact upper and lower boundary conditions are

Dζ

Dt
= 0 at z = 0, (2.1a)

D (h+ ζ)

Dt
= 0 at z = −h. (2.1b)

Trivial solutions of these equations are given by an isopycnal surface (ζ = const.
at z = 0) or interface (h + ζ = const. at z = −h), but the interest here lies in the
more general case of non-isopycnal boundaries. The physical interpretation of these
equations is that each fluid element, in either of the boundaries, stays there and keeps
the value of its density; changes in this property due to buoyancy fluxes through the
surface or entrainment of deep water can be incorporated as forcing terms in the
right-hand sides.

Isobars are horizontal, by definition, in the lower layer: ptotal = −gzρdeep/ρ0 for
z < −h. Let us write in the active layer ptotal = P (z) − gzρdeep/ρ0 + p (x, z, t), for
−h 6 z 6 0, where dP/dz = Θ(z) and p is the (kinematic) pressure variation field.
The hydrostatic balance, ∂z ptotal = −gρ/ρ0, and the pressure continuity condition at
the interface give ∂zp = Θ (z − ζ)−Θ (z) at −h 6 z 6 0 and p = −P (−h) at z = −h.
For small isopycnals and interface displacements, say ζ → 0 and η := Hr−h (x, t)→ 0,
the equations used to evaluate the pressure perturbation field are simplified to

∂zp = −N2ζ, −Hr 6 z 6 0, (2.2a)

p = −gbη, z = −Hr. (2.2b)

The symbol gb denotes the buoyancy at the base of the active layer, namely gb :=
Θ(−Hr), a parameter which plays a fundamental role in this model.

These equations are used in the development of the quasi-geostrophic approxima-
tion, for which all deviations from a motionless reference state (with ζ = η = 0) are
considered O(ε), where ε → 0 is a Rossby number; nonlinear advection terms are
kept because it is also assumed ∂t = O(ε). The lowest order of all dynamical fields is
written in terms of a single one, the streamfunction ψ, namely

u = ẑ × ∇ψ, p = f0ψ, ζ = −f0N
−2∂zψ, η = −f0g

−1
b ψ− (2.3a–d )

+ O(ε2), where the subscripts + and − mean ‘evaluated (or defined) at z = 0
and z = −Hr ’, respectively. (From now on, the symbols (u, p, ζ, η) denote the O(ε)
geostrophic fields.) Equation (2.3a) is a consequence of the vanishing divergence of
the horizontal velocity field (since w = O(ε2)) and, together with (2.3b), gives the
geostrophic balance; (2.3c) gives the hydrostatic balance (2.2a); finally, (2.3d) gives
the boundary condition at the interface (2.2b).
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Prognostic fields are the quasi-geostrophic potential vorticity†
q (x, z, t) := f + ẑ · ∇× u− f0∂zζ = f + ∇2ψ + ∂z(f

2
0N
−2∂zψ), (2.4)

and the buoyancy changes at the surface and the interface, proportional to

q+ (x, t) := f0H
−1
r ζ+ = −f2

0H
−1
r

(
N−2∂zψ

)
+
,

q− (x, t) := −f0H
−1
r (ζ− − η) = f2

0H
−1
r

(
N−2∂zψ − g−1

b ψ
)
− .

(2.5)

From now on, qn will denote either q (x, z, t), q+ (x, t), or q− (x, t), in their respective
domains (namely, x ∈ D for all qn, and −Hr < z < 0 for qn = q, z = 0 for qn = q+,
or z = −Hr for qn = q−); a similar notation will be used for ψn = ψ, ψ+, or ψ−.
The evolution equations are conservation of potential vorticity in the interior and of
density at the upper and lower boundaries, equations (2.1), which take the form

∂tqn + [ψn, qn] = 0, (2.6)

with [A,B] = ẑ · ∇A×∇B the horizontal Jacobian. (Of course, ∂tA+ [ψ,A] is the O(ε)
part of the material derivative ∂tA+u ·∇A+w∂zA.) This system is complemented with
the conditions of constancy of Kelvin circulations

∮
∂Di
∇ψ · n̂ dl = γi(z) (−Hr < z < 0;

∂D is the union of the disconnected coasts ∂Di), and of vanishing of the normal
velocity at the coasts, ẑ × ∇ψ · n̂ = 0 (x ∈ ∂D, −Hr < z < 0). It can be shown that
ψ(x, z, t) can be uniquely calculated from q(x, z, t), q±(x, t), and γi(z), at any time,
and therefore this is a well posed problem. This inversion is explicitly developed in
the Appendix for the particular case of a channel.

The Coriolis parameter and nabla operator will be represented as f = f0 + βy and
∇ =

(
∂x, ∂y

)
even though in a correct β-plane approximation some geometric terms

must be included (Ripa 1997). Thus if longitude and latitude are linear functions
of x and y, respectively, the squared horizontal arc element is γ2dx2 + dy2, where
γ = 1− tan ϑ0 y/RT +O(y2), with ϑ0 the reference latitude and RT is the mean radius
of the Earth. Assuming y/RT = O(ε), however, it is found that these geometric
(non-Cartesian) terms make a higher-order (in ε) contribution to variable definitions
and model equations (Pedlosky 1979; Ripa 1997), and are conveniently ignored in
(2.3) and other equations, treating ∇ as if the geometry were Cartesian.

2.1. Conservation laws and Hamiltonian structure

Three integrals of motion are derived from the quasi-geostrophic model (2.6), namely

E[ψ] = 1
2
〈bu2 +N2ζ2ez + gbH

−1
r η2〉

= 1
2
〈b(∇ψ)2 + f2

0N
−2(∂zψ)2ez + R−2ψ2

−〉 (2.7)

is a free energy, quadratic and positive definite in the deviation from the state of rest,

M [ψ] =
〈buez + f0yH

−1
r η
〉

=
〈b−∂yψez + R−2y ψ−

〉
† The primitive equations version of Ertel’s potential vorticity is qPE =

[ẑ × ∂zu+ ẑ (f + ẑ · ∇× u)] · [(∇+ ẑ ∂z)F (z − ζ)], where F (z − ζ) represents an arbitrary function
of density. Now, q equals the expansion of qPE up to linear order in ε only if F (z − ζ) = z− ζ. For
other choices of F (z − ζ), there is an extra O (ε) term in qPE − q which, nevertheless, cancels out in
the evolution equation, i.e. for any F (z − ζ) it is DqPE/Dt = ∂tq + [ψ, q] + O

(
ε3
)
; see also § 6.5 of

Pedlosky (1979).
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(modulo constant terms) is the zonal momentum, including a Coriolis contribution
related to changes in the thickness of the active layer, and

C [ψ] = 〈bφ(q, z)ez + φ+ (q+) + φ− (q−)〉
is a general Casimir, where the φn are arbitrary functions. The notation is such that
horizontal and vertical averages are denoted by 〈· · ·〉 =

∫∫
D

(· · ·)dx dy/
∫∫

D
dx dy and

b· · ·ez = H−1
r

∫ 0

−Hr
(· · ·)dz, respectively, and

R =
√
gbHr/ |f0|

is the external deformation radius. Conservation of E and C is guaranteed by the
boundary conditions, whereas M is a constant of motion only when the horizontal
domain D is invariant under zonal translations: a zonal channel (with the limiting
cases of a half-plane or the whole plane). These conservation laws are not a spurious
result of the quasi-geostrophic approximation but, rather, correspond to those of the
‘parent’ primitive equations model (Ripa 1995).

Notice that since E [ψ] is exactly a quadratic functional of ψ, it follows that
E [ψ + δψ] = E [ψ] + δE [ψ, δψ] + E [δψ], i.e. the second variation is δ2E [ψ, δψ] =
E [δψ] = O

(
δψ2

)
and higher-order variations vanish. More explicitly E [ψ + δψ] −

E [ψ] = 〈b∇ · (ψ∇δψ) + ∂z
(
f2

0N
−2ψ ∂zδψ

) − ψδqez + R−2 ψ−δψ−〉 + E [δψ], where

δq = ∇2δψ + ∂z
(
f2

0N
−2 ∂zδψ

)
and the fields ψ and δψ are arbitrary. Integration of

the first two terms yields

δE [ψ, δψ] =
∑
i

A−1
⌊
ψ|x∈∂Di δγi

⌉z − 〈bψ δqez + ψ+δq+ + ψ−δq−〉 (2.8)

for the first variation, where A =
∫∫

D
dx dy is the area of the horizontal domain.

Finally, if this domain is a zonal channel then it also follows that

M [ψ + δψ]−M [ψ] ≡ δM = 〈y bδqez + yδq+ + yδq−〉 −
∑
i

A−1yiδγi.

Equation (2.8) suggests as coordinates in state space the fields q(x, z, t), q+(x, t),
q−(x, t), and γi(z). Defining the Lie–Poisson bracket between two arbitrary functionals
A [qn, γi] and B [qn, γi] by

{A,B} :=

〈⌊
q

[
δA
δq

,
δB
δq

]⌉z
+ q+

[
δA
δq+

,
δB
δq+

]
+ q−

[
δA
δq−

,
δB
δq−

]〉
,

it is (∂t + α∂x) qn = {qn,Hα}, where

Hα [ψ] = E [ψ]− αM [ψ] + C [ψ] . (2.9)

Furthermore, the Lie–Poisson bracket is antisymmetric and satisfies the Jacobi identity.
Therefore, Hα [ψ], with arbitrary C [ψ], is a Hamiltonian for the evolution equations
in a frame moving with velocity αx̂ with respect to the Earth; the form of the Lie–
Poisson bracket is standard for quasi-geostrophic models (see for instance McIntyre
& Shepherd 1987; Shepherd 1990; Morrison 1994; Ripa 1994).

3. Formal stability
The integrals of motion of a dynamical system can be used to establish a priori

stability and instability conditions (Abarbanel et al. 1986; Liu, Mu & Shepherd 1996;
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£ = g (qdeep –qr (z)) /q0

gb

–Hr

z

0

gb+Nr
2Hr =

gb(1+s)

Figure 2. Buoyancy (relative to the deep water) in the motionless reference state. The buoyancy
jump at the base of the active layer (z = −Hr) equals gb, whereas the buoyancy variation within
that layer equals N2

r Hr (= s gb). The stratification parameter s is used in the following figures.

Ripa 1992a, b, c, 1993). Let the streamfunction be split as ψ = Ψ + δψ, where the
basic flow Ψ is an exact solution of the model and the perturbation δψ is arbitrary.
The evolution equations take the form

δqn,t + [Ψn, δqn] + [δψn, Qn] = − [δψn, δqn] . (3.1)

In order to solve these equations it is necessary to calculate δψ (x, z, t) as a functional
of δq (x, z, t), δq± (x, t), and δγi (z), using the procedure developed in the Appendix.

Now, if ∂tΨ = 0 it may be possible to construct the integral of motion (2.9) where
α is an arbitrary constant (which can be different from zero only for a symmetric
basic state ∂xΨ = 0) and the Casimir C is chosen so that δHα [Ψ, δψ] = 0. Thus
Hα [Ψ + δψ] =Hα [Ψ ] + δHα [Ψ, δψ] + δ2Hα [Ψ, δψ] + · · · where the first term is
a constant, by definition, the first variation vanishes by construction, and the second
variation equals

δ2Hα [Ψ, δψ] = E [δψ] + δ2C [Ψ, δψ] , (3.2a)

where

δ2C [Ψ, δψ] =
1

2

〈⌊
α−U
Q,y

(δq)2

⌉z
+
α−U+

Q+,y

(δq+)2 +
α−U−
Q+,y

(δq−)2

〉
. (3.2b)

This second variation δ2Hα is an integral of motion of the linearized equations,
obtained by neglecting the nonlinear term in the right-hand side of (3.1), which can
be used to obtain stability/instability conditions: If there is a value of α such that
δ2Hα is sign definite, then the basic state Ψ is formally stable. On the other hand, if
Ψ is unstable then for any α there must be perturbations such that δ2Hα = 0.

Consider the simplest reduced-gravity problem, namely a reference buoyancy rela-
tive to the passive layer

Θ(z) = gb +N2
r (z +Hr) , (3.3)

where gb and N2
r are positive constants (see figure 2), and a basic flow, whose stability

is studied, of the form

U (z) = Ub +
(
1 + z/Hr

)
Us, (3.4)
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0 0.5 1.0 1.5m = sUb/Us = –0.5

è = mú

–1 0 1 2m /s = Ub/Us = –2
Ub + Us
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(a)

(b)

Figure 3. Mass (a) and velocity (b) fields at the basic state used to study the baroclinic instability
problem. For ν > 0 (< 0), interface and isopycnals slope in the same (opposite) directions and
for ν = 1 the lower boundary has constant density; this is important for the interpretation of the
following figures. The horizontal coordinate is y in (a) and x in (b).

where Ub and Us are real constants. Four non-dimensional parameters are needed to
characterize this baroclinic instability problem

s =
N2
r Hr

gb
, ν = s

Ub

Us

, b =
βL2

Us

, κ = |k|L, (3.5)

where L = NrHr/|f0| is Eady’s horizontal scale. The first basic-state parameter, s, is a
measure of the stratification within the active layer relative to the buoyancy jump at
the interface.† The second one, ν, is the geostrophic slope of the interface (proportional
to the velocity jump Ub between the base of the active layer and the passive one),
relative to the slope of the isopycnals (see figure 3). The third one, Charney number
b, is proportional to the meridional gradient β of the Coriolis parameter, normalized
so that b/ν equals the ratio of the planetary to the topographic contributions to the
gradient of the basic-state potential vorticity f/H (Ripa 1999b).

The basic flow (3.4) corresponds to Ψ = −Uby−(1 + z/Hr

)
Usy. Figure 3 shows the

basic-state velocity U (z) (part a) and mass [ρ (y, z) , H (y)] (part b) fields, for different
values of Ub/Us (which is the equivalent of s−1, for the basic velocity instead of for
the reference buoyancy). Notice that the value Ub/Us = 0 separates the cases where
the velocity at the bottom of the active layer and the shear have the same or opposite
signs or, equivalently, the cases where isopycnals and the interface slope in the same
or opposite directions. More precisely the isopycnals and interface elevation fields
in the basic state are given by ζ = (f0/N

2
r Hr)Usy and η = (f0/gb)Uby ≡ νζ. When

ν > 1, density increases in opposite directions at the top and bottom boundaries (see
figure 3).

In this case, the three basic fields Qn are linear functions of y. It turns out that the

† The corresponding parameters used by Ripa (1995) and Beron–Vera & Ripa (1997) are
gr = gb

(
1 + s/2

)
, S = s/ (2 + s), U = Ub + 1

2
Us, and Uσ = 1

2
Us; the variables chosen here simplify

the notation. Notice that 0 < S < 1 but 0 < s < ∞.
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integral of motion Hα [ψ] is exactly quadratic in the perturbation, Hα [Ψ + δψ] −
Hα [Ψ ] ≡ δ2Hα [Ψ, δψ] from (3.2a). The pseudomomentum −∂α (δ2Hα [Ψ, δψ]

)
is

but a linear combination of the variances of the prognostic variables δqn. The relative
sign of the coefficients Q−1

n,y , where[
Q,y, Q+,y , Q−,y

]
= L−2Us [b, 1, ν − 1] ,

gives a priori information on the stability/instability properties of the basic flow,
namely if the three coefficients have the same sign then the basic flow is stable;
moreover, it is easy to prove nonlinear stability in suitable defined norms (Ripa
1999c). On the other hand, if the basic flow is unstable, then one of the coefficients
must have sign opposite to that of the other two, and therefore for a growing
perturbation the variance of the corresponding δqn must be important, because it
balances the other two terms. This a priori information on the structure of growing
perturbations was used in the problem of vortex stability in a two-layer model in Ripa
(1992a). The analysis of the relative signs of the coefficients Q−1

n,y yields the following
results:

ν < 1 ν > 1
b > 0 δq− stable

b < 0 δq+ δq

(3.6)

where each entry indicates either stability of a basic flow with those parameters or
which one of the three fields δqn must be an important part of a growing perturbation
(if the basic flow is unstable).

When β = 0 it is not possible to construct an integral of motionHα [δψ] whose first
variation vanishes for arbitrary perturbations (which include δq 6= 0). This complicates
very much the derivation of normed stability theorems (Liu et al. 1996) but not in the
case of formal stability. In fact, for β = 0 it follows that δq,t + [Ψ + δψ, δq] = 0 and
then δq = 0 is a constraint which is maintained by the dynamics. The integralHα [δψ]
(3.2a) without the first term in δ2C (3.2b) is a finite-amplitude constant of motion
of the constrained dynamics. This might seem surprising, because β appears in the
denominator of the suppressed term. However, this term is 1

2
β−1

〈⌊
(α−U) δq2

⌉z〉
=

1
2
β
〈⌊

(α−U) δY 2
⌉z〉

, where Y (x, z; q) is the y-coordinate of a q isoline, and thus this
term does tend to zero as β → 0 if δY is bounded.

For β = 0 and δq = 0, the last column in (3.6) shows that the basic flow is stable
for ν > 1, independently of the sign of Us, because the reducedHα [δψ]δq=0 is positive
definite; this is known as Arnold’s first theorem, see figure 4. It is possible to prove
stability for some cases with ν < 1, by showing that Hα [δψ] is negative definite
(Arnold’s second theorem), but that requires an explicit development of the dynamics
in the δq = 0 subspace. This is done using δq± (x, t) as coordinates or elementary
fields; making a Fourier representation of them

δq (x, t) =
∑
k,l

qk,l (t) eikx sin ly,

equation (A 4) shows how to calculate δψ (x, z, t) from δq± (x, t). A bold face symbol
indicates a vector field with top and bottom components, e.g. δq = (δq+ δq−)T.
Evaluating expression (A 4) at z+ = 0 and z− = −Hr gives δψ± (x, t) = δψ

(
x, z±, t

)
,

which is all that is needed to solve the evolution equations, as

δψ (x, t) = −L2
∑
k,l

E qk,l (t) eikx sin ly (3.7a)
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Figure 4. Normal mode growth rate κ Im c/Us as a function of the wavenumber κ and the interface
slope ν, for fixed stratification s and β = 0. The shaded regions in (ν, κ)-space labelled Arnold 1
and 2 are proved to be stable because the Hamiltonian is positive or negative definite, respectively;
in the second case, κ must be interpreted as the minimum wavenumber allowed by the channel.

where

E (κ) =
1

τκ+ s

(
1 + sτ/κ

√
1− τ2

√
1− τ2 1

)
(3.7b)

with κ2 =
(
k2 + l2

)
L2 and τ = tanh κ. Thus, for a single Fourier component δψ =

−L2Eδq and the matrixE gives the energy in δq space, namely, b(κδψ)2+(Hrδψ,z)
2ez+

s(δψ−)2 = L4(δqTEδq), in accordance with (2.8). Nonlinear dynamics on the δq = 0
subspace conserve the quadratic integral, Hα[ψ] = 1

4
L2
∑

k,l Re [qk,l(t)† H(α, κ)qk,l(t)],
where

H (α, κ) = E (κ) +

(
a− 1 0

0
a

ν − 1

)
(3.8)

and a = (α−Ub) /Us is arbitrary.
Two clarifications must be made now. First, in order to calculate δψ (x, z, t), and

(3.7a) in particular, it was assumed that δγi (z) = 0 for simplicity, since a perturbation
of the Kelvin circulations only produces a change in the basic flow; see (A 7). Secondly,
expression (3.7b) for the matrix E is not valid when k = 0; see (A 6). However, it can
be shown that a growing perturbation must have k 6= 0.† Allowed wavenumbers κ
for a growing perturbation are then

κ > κmin = πL/W (3.9)

† Formal stability is guaranteed by an extremum of E−αM on the isovortical sheet C [φn] = const.
for all φn = φn (qn) (Morrison 1994). The condition

∫∫
φn (Qn (y) + δqn) = const. implies∫∫

φ′n (Qn (y)) δqn = 0 when δqn is an infinitesimal growing perturbation. Since Qn (y) is monotonic,

choosing φn (qn) = 1 if qn > Qn (y0) and φn (qn) = 0 otherwise, it follows that
∫∫
δ (y − y0) δqn = 0

∀y0, which in the case of a growing normal mode implies k 6= 0 (Ripa 1993).
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if the channel is infinite or κ2
min =

(
πL/W

)2
+
(
2πL/Lx

)2
if the channel is periodic,

with length Lx.
Formal stability/instability conditions are then derived as follows:
If ∃ α such that detH (α, κ) > 0, ∀κ > κmin ⇒ STABLE.
If UNSTABLE ⇒ ∃κ > κmin such that detH (α, κ) 6 0, ∀α.

Now, detH (α, κ) is a second-order polynomial in α, such that the coefficient of α2

has the sign of ν − 1. Consequently there is stability for ν > 1, whereas instability for
ν < 1 and wavenumber κ requires maxα detH (α, κ) < 0, namely

∂α detH (α, κ) = 0

detH (α, κ) = 0

}
⇒ ν = ν± (s, κ) ,

where

ν± = 2τ2 − κτ+ s
(
τ/κ− 1

)±√4
(
1− τ2

)
(κ− τ) (τ+ s/κ

)
. (3.10)

These expressions give two values of κ for each ν < 1, say κ = κS (ν, s) and
κ = κL (ν, s), such that detH (α, κ) 6 0 for any α and κL 6 κ 6 κS . Figure 4 shows
the results for the sign of detH in the (ν, κ)-space. In the region labelled ‘Arnold
1’ (ν > 1) detH (α, κ) > 0 and trH (α, κ) > 0 in a neighbourhood of α = ∞, and
therefore the basic flow is nonlinearly stable (the Hamiltonian is positive definite).
In the region labelled ‘Arnold 2’ (κ > κS (ν, s)) detH (α, κ) > 0 and trH (α, κ) < 0
in a neighbourhood of the value of α where ∂α detH (α, κ) = 0; if the minimum
wavenumber in the channel is κmin > κS there is also formal stability, but now
because the Hamiltonian is negative definite. Finally, it is shown below that for
κ < κL there is spectral (normal mode) stability for that particular wavenumber,
but there may be instability if a higher allowed wavenumber falls in the region
κL 6 κ 6 κS .

A similar analysis can be done with the layered quasi-geostrophic model (Paret
& Vanneste 1996); in particular, with two layers (the classical Phillips problem)
the results of Mu et al. (1994) are obtained. In fact, the pseudomomentum of this
problem and that of Phillips’ model, between horizontal and rigid boundaries, are
formally equivalent making the change of parameters ν 7−→ 2b/(b + 2): ‘Arnold 1’
nonlinear stability condition ν > 1 is equivalent to |b| > 2, and the wave enstrophy
bounds derived by Shepherd (1988) can be translated to the present problem (Ripa
1999a). ‘Arnold 2’ stability results cannot be quantitatively translated from one
problem to the other, essentially because the corresponding energy matrices E (κ)
are different. Olascoaga & Ripa (1999) study the layered equivalence of the present
problem (2 1

2
-layers, i.e. Phillips’ model with a free boundary), for which ν and b

are independent parameters, with results qualitatively similar to those obtained here:
‘Arnold 1’ nonlinear stability condition for |ν + b| / (2− ν) negative or greater than
1, and ‘Arnold 2’ condition κmin > κS (b, ν, s), where κS coincides with the short-wave
cutoff for normal modes instability. The approximate two-field model developed in
Ripa (1999b) gives a reasonable representation of the spectral instability in (κ, b, ν, s)
space; however, it lacks enough Casimir integrals of motion to build the equivalent
of Hα and prove formal stability.

4. Linear instability for b = 0

An infinitesimal perturbation δq± = a q̂± eik(x−ct) sin ly+O
(
a2
)

satisfies ik
(
U± − c) q̂±

+ ikQ±,yψ̂± = 0. Using ψ̂ = −L2Eq̂ from (3.7b), the normal mode equations
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Figure 5. Dependence of the instability region on the stratification parameter s, using the scaling
appropriate for (a) long and (b) short perturbations when s → 0. The horizontal line shows the
short-wave cutoff of Eady’s problem (with horizontal and rigid boundaries).

H (c, κ) q̂ = 0 follow, whose non-trivial solutions imply the dispersion relation

c−Ub

Us

=
1

2
− ν + sτ/κ±√∆

2 (s+ κτ)
, (4.1)

first obtained by Beron-Vera & Ripa (1997). The discriminant can be written as
∆ = (ν − ν+) (ν − ν−), where ν± (s, κ) from (3.10) give the boundary of negative definite
Hamiltonians. Consequently, the spectral instability condition ∆ < 0 coincides with
the criteria derived from the conservation laws (figure 4), which are then not only
necessary but also sufficient. The fact that unstable states are ‘surrounded’ by formally
stable states, with a sign-definite integral of motion, is used for the determination of
perturbation saturation bounds (Ripa 1999a).

Figure 5 depicts the instability region for different values of the stratification s.
Figure 5(b) shows that, using as variables ν and κ, a value of s = 0.1 is very close
to the asymptotic curves for s → 0; these asymptotes are obtained by making s = 0
in (4.1). The long-perturbations limit (figure 5a, for which the appropriate variables
are Ub/Us = ν/s and |k|R = κ/

√
s) was found to depart considerably from Eady’s

problem by Fukamachi et al. (1995), for ν = 0, and Beron-Vera & Ripa (1997), for
ν = O (s). Inspection of figures 5(a) and 5(b) shows that Eady’s model is a valid
approximation of the present problem, with a free boundary, only for s → 0, with
κ = O (1) and ν � 1.

4.1. Eigenvalues

Eady’s model (which has rigid and horizontal boundaries) presents instability for any
Ub, any Us 6= 0, and the wavenumbers 0 < κ < κE = 2.3993573 . . . (κE tanh

(
κE/2

)
=

2). The present model has both long- and short-perturbation cutoffs, κL (ν, s) and
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Figure 6. Imaginary part of the eigenvalue c (scaled by the shear Us), as a function of κ and for
different values of s and ν. The dot-dashed curve corresponds to the result of Eady’s model (with
rigid horizontal boundaries).

κS (ν, s). These coincide at the maximum value of ν, namely

ν = 1⇒ κL = κS , κS
1− κS tanh κS
κS − tanh κS

= s, (4.2)

whereas for Ub = 0, the value chosen by Fukamachi et al. (1995),

ν = 0⇒ κL = 0, κS
κS sinh κS − 2 cosh κS − 2

sinh κS − κ cosh κS
= s.

Notice that for κ→ ∞, ν± ∼ −κ± 2
√
κ, i.e. κS ∼ −ν + 2

√−ν and κL ∼ −ν − 2
√−ν

as ν → −∞: it is possible to have instability for arbitrarily short perturbations.
This peculiarity is related to the choice of an horizontal and rigid top (Ripa 1999c);
pseudomomentum conservation implies that a topography at that boundary (e.g. the
geostrophic slope it would acquire if it were also free) renders the range of unstable
ν finite.

Both κL (ν, s) and κS (ν, s) decrease with increasing s. For instance, for weak strat-
ifications, s → 0, κS (1, s) ↑ κE/2 and κS (0, s) ↑ κE . On the other hand, for strong
stratifications the dispersion relation becomes

s→∞ :

{
κ = O(s−1/2)

c ∼ 1
6
s−1Us(sκ

2 − 3ν ±√(sκ2 − 6 + 3ν)2 + 36(ν − 1)),

i.e. the instability region is shrunk into low wavenumbers, κL = |√3/s−√3 (1− ν) /s|
and κS =

√
3/s +

√
3 (1− ν) /s, a weak bottom flow is needed for instability, Ub =

O
(
s−1Us

)
, and the growth rate decreases as κ Im c/L = O

(
s−3/2Us/L

)
.

Figure 6 shows Im c/Us, as a function of κ and for different s. In figure 6(a),
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Ub/Us = −0.5, a long-perturbations cutoff is seen which tends to zero as s → 0.
In figure 6(c), Ub/Us = 0, there is no long-perturbations cutoff, but the ‘boundary
layer’ with the scaling κ = O(

√
s) is seen, where the solution has not yet asymptoted

to the result of Eady’s model. For ν = O(1), graphs at the right, the results differ
completely from those of Eady’s model. The long-perturbations cutoff increases with
s (upper graphs). Finally, recall that the short-perturbations cutoff can in this model
be as large as desired: this is seen in figure 6(d), where Im c/Us is plotted choosing
ν = 2τ2 − κτ + s

(
τ/κ− 1

)
, the mean of the two terms in (3.10), which gives the

maximum value of Im c/Us, at each κ.
An interesting result depicted by the curves in figure 6(d) is that the asymptotic

maximum value of Im c/Us is twice as large as that from Eady’s model, namely

Im c/Us = (1/
√

3) (1− ε+ O (s)), where ε =
√

15s/16. This maximum is reached at

κ =
√
ε+ O

(
s3/4
)

and ν = ε− ε2 + O
(
s3/2
)
; these are values in the ‘matching layer’

between the scales of short perturbations [κ = O (1) and ν = O (1)] and long ones
[κ = O

(√
s
)

and ν = O (s)]. The growth rate of the perturbation k Im c not only
depends on the value of κ (as Im c does) but also on the width of the channel or,

equivalently, on κmin defined in (3.9). Thus, k Im c/
(
Us/L

)
=
√
κ2 − κ2

min Im c/Us is
bounded by κ Im c/Us, shown in figure 4 for a particular value of s. Making s → 0,
for example, the maximum non-dimensional growth rate is found to be

max
ν,κ

(
κ Im c/Us

)
b=0
∼ 0.367

and is reached at κ ∼ 1.138 and ν ∼ 0.398 (see figure 4). This growth rate is about 18%
larger than that obtained in Eady’s model and 27% smaller than the value predicted
in Ripa (1999b) and Olascoaga & Ripa (1999) for b 6= 0, namely max

ν,κ,b

(
κ Im c/Us

) ∼ 1
2
.

One important point is that the maximum growth rate for b = 0 is reached at short
perturbations, κ = O (1), whereas for b 6= 0 it is reached at intermediate scales,
κ = O

(
4
√
s
)
.

4.2. Eigenfunctions

The normal mode equations H (c, κ) q̂ = 0 give the dispersion relation (4.1) and the
eigenfunction (

q̂+

q̂−

)
∝
(

−√1− τ2κUs

Us (κ+ sτ) + κ (s+ κτ) (c−Ub −Us)

)
,

which corresponds to ψ̂ (z) ∝ (c−Ub −Us) κ cosh κ z/Hr − Us sinh κ z/Hr . Figure 7
shows some representative plots of the eigenfunctions of the instability. Even though
these profiles of amplitude and phase show quite a bit of structure, those of the real
and imaginary parts of ψ̂ (z) (not shown) can be reasonably fitted to straight lines in
z, which partially explains the success of the approximate model developed in Ripa
(1999b) by restricting the streamfunction to have a linear z structure. The variation
due to the slope ν can be appreciated by comparing rows (b) and (c). Notice the
importance of the stratification, except for the s� κ2 cases. Only the ν = 0 and s = 0
curve shows the vertical symmetry characteristic of Eady’s problem.

4.3. Effects of interface shape and rigidity

It is important to try to understand the physical origin of the differences between
Eady’s problem (with rigid horizontal boundaries) and the present one, which has

the effect of the basic flow on the lower boundary, making H = Hr − f0g
−1
b Uby;
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Figure 7. Vertical structure of some growing perturbations. (The scale of the amplitude and the
origin of the phase are, of course, arbitrary.)

the effect of the perturbation, further making h = Hr − f0g
−1
b

(
Uby − ψ′−

)
.

Both effects contribute to the solution for the perturbation through the linearized
form of the lower boundary equation D (h+ ζ) /Dt = 0. In order to isolate the first
effect, we for the moment replace this equation by D (Hr − ay + ζ) /Dt = 0, which
represents a fixed bottom topography z = −Hr + ay. This modification gives the
dispersion relation derived by Blumsack & Gierasch (1972), which coincides with
(4.1) for s = 0, κ finite, and ν = aNrL/Us (so that the basic bottom slope is the same
in both cases). The eigenfunctions of the problem with a rigid sloping bottom can be
similarly obtained from those of the present problem, making s → 0 while keeping
(κ, ν) fixed. The importance of the softness of the interface can then be accessed by
comparing the s = 0 and s 6= 0 curves in figure 5 for the instability regions, figure
6 for the eigenvalues, and figure 7 for the eigenfunctions. It is clear that for s � κ2

the differences between Eady’s problem and the present model for normal modes
instability are solely due to the sloping of the interface produced by the basic flow
(seen for |ν| & s), whereas for s & κ2 the deformation of the interface produced by
the perturbation is also important. This point is reinforced in § 5, where incipient
nonlinearities are considered.

4.4. Comparison with White’s modified QG model

The quasi-geostrophic model developed here (2.6) is identical to the classical three-
dimensional one, except for the reduced-gravity boundary equation (the evolution
equation of q−). I am not aware of a similar development in the literature. However,
the modified quasi-geostrophic model derived by White (1977), which incorporates
non-Boussinesq effects, is formally similar to the present one at the lower boundary. It
seems important to analyse to what extent the models differ. White (1977) considered
two modifications to the Boussinesq QG model: (a) The reference density variation
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with height is included, ρ0,z = − (g−1N2 + gc−2
s

)
ρ0, which gives an extra term in the

definition of q. (b) The hydrostatic balance is written as ∂zp−g−1N2p = −N2ζ, instead
of (2.2a); using rigid and horizontal top and bottom, the boundary condition Dζ/Dt =
0 reads D

(
ψ,z − g−1N2ψ

)
/Dt = 0 at z = 0 and z = −Hr . The present model, on the

other hand, uses Dψ,z/Dt = 0 at z = 0 (rigid top) and D
(
ψ,z − g−1

b N
2ψ
)
/Dt = 0

at z = −Hr (soft bottom). Even though at the lower boundary both models satisfy
a similar equation, the physical interpretation is quite different, because g−1 � g−1

b .
For the upper ocean, White’s modifications are negligible: sW (:= g−1N2Hr) and sC
(:= gc−2

s Hr) are of the order of 10−3 or less. The extra term in the energy equation
(2.7) is the external potential energy due to the deformation of the interface, whereas
in White’s model the Boussinesq-approximation internal potential energy is modified,

because ζ2 is proportional to
(
ψ,z − g−1

b N
2ψ
)2

, and there is an extra contribution

c−2
s p

2, due to the compressibility (Blumen 1978; Kushner & Shepherd 1995).
If the upper boundary were also free in the present model, with g0 the buoyancy vari-

ation across that boundary, then the top condition would be D
(
ψ,z+g

−1
0 N2ψ

)
/Dt=0

at z = 0. Notice the sign difference with White’s model, which is quite important: solv-
ing for Eady’s problem with his modified boundary conditions but keeping ρ0 = const.,
White finds a singularity of the eigenvalue c at κ = sW , a singularity which is absent
in the present model with one or two soft boundaries. Blumen (1978) included the
variation of ρ0 (z), which requires an exponential U (z), finding that the singularity
disappears but that, instead, there is always a long-wave cutoff of the instability,†
whereas in the present model there are growing perturbations with arbitrary small
κ (at ν = 0). Even for weak stratifications and short perturbations in both models,
making sW = s→ 0 and κ2 � s, the dispersion relations that result for White’s model
and the present one are also found to differ.

5. Energetics
Consider any x-independent basic flow and an O (a) perturbation, where it is

formally assumed that a→ 0. The total streamfunction can be expanded as

ψ = Ψ (y, z) + ψ′(x, y, z, t) + Ψ ′(y, z, t) + ψ′′(x, y, z, t) + · · ·
O : 1 a a2 a2 a3

(McPhaden & Ripa 1990; Ripa 1992b). The first term represents the prescribed basic
flow (which is a trivial nonlinear solution of the equations of motion, because it is
x- and t-independent). For the second term, a normal mode perturbation is selected
ψ′ = Re (a ψ̂(y, z)eik(x−ct)). The third term represents the O(a2) correction to the mean
flow produced by the perturbation rectification, which is calculated from the x-average
of the model equations (2.6), namely

Q′n,t +
[
ψ′n, q′n

]
= 0, (5.1)

where Q′ =
(
∂2
y + f2

0N
−2∂2

z

)
Ψ ′, etc.; constancy of Kelvin circulations further requires

Ψ ′,yt = 0 at y = 0, W and −Hr < z < 0. Finally, the fourth term is the harmonic
correction of the perturbation, which will not be considered here.

The total free energy is E ∼∑∞
n=0 E(n)an, and clearly dE/dt = 0 implies dE(n)/dt = 0

∀n. The first law, dE(0)/dt = 0, is trivial because E(0) is only a functional of the time-
independent basic state Ψ , whereas E(1) = 0 is easily satisfied by virtue of the eikx

† Blumen chose sW +sC = 1, but it can be shown that the long-wave cutoff is present for arbitrary
values of these two parameters.
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factor. (For a more general horizontal domain D, though, a growing or decaying
eigen-perturbation must be such E(1) = 0, which is actually a restriction on the
shape of the linear eigenfunction.) At second order in a, E(2) = E(2)

W + E(2)
M , where

E(2)
W ≡ E [ψ′] = 1

2
〈b∇ψ′ · ∇ψ′ez + · · ·〉 and E(2)

M ≡ δE [Ψ, Ψ ′] = 〈b∇Ψ · ∇Ψ ′ez + · · ·〉.
Traditionally, quasi-geostrophic instability is studied in terms of energy transfers
between the perturbation and the mean flow, so that

dE(2)
W

dt
+

dE(2)
M

dt
= 0.

In order to evaluate each term, quite a bit of algebra can be saved by using expression
(2.8) for the first variation of the free energy δE [ψ, δψ].

First, the rate of change of the perturbation energy dE [ψ′] /dt = δE[ψ′, ψ′,t]
yields dE(2)

W /dt = − 〈⌊ψ′q′,t⌉z + ψ′+q′+,t + ψ′−q′−,t
〉

plus terms proportional to ψ′|x∈∂Di γ′i,t
which vanish because of the constancy of Kelvin circulations. Now, each term can
be transformed as in − 〈ψ′q′,t〉 =

〈
ψ′Uq′,x

〉
= −U 〈v′q′〉, using first the equation for q′,t

and then making a partial integration, which yields

dE(2)
W

dt
= − 〈b(U − α) v′q′ez + (U+ − α) v′+q′+ + (U− − α) v′−q′−

〉
, (5.2)

where α is any constant. Consequently, the term proportional to α vanishes identically:
this constitutes the generalization, to the problem with a free boundary, of a theorem
originally derived by Bretherton (1966) for the system with rigid and horizontal
boundaries. It is clear that to classify instabilities by the relative size of the different
terms in (5.2) can be misleading: one might choose α as the value of U in a certain
region, and then apparently that region does not contribute to the energetics. Only
the total value dE(2)

W /dt has a clear physical meaning.
Secondly, evaluation of δE [Ψ, Ψ ′] yields

E(2)
M = − 〈bΨQ′ez +Ψ+Q

′
+ +Ψ−Q′−

〉
,

modulo the (constant) circulation changes Ψ Γ ′i at y = 0,W . Taking the time deriva-

tive and using (5.1) it follows that dE(2)
W /dt + dE(2)

M /dt = 0, as desired. (This form of
deriving the energy equations using but the form of the first variation (2.8) can also
be used for non-parallel flow instability, in a more general domain D.)

From the linearized equations Qn,yv′nq′n = − 1
2
∂tq′2n , and therefore, if Qn,y 6= 0 the

right-hand side of (5.2) equals dC(2)
W /dt where the wave Casimir C(2)

W = δ2C [Ψ,ψ′] is
the O

(
a2
)

contribution to (3.2b). Consequently, the O
(
a2
)

energy conservation law,

dE(2)
W /dt + dE(2)

M /dt = 0, is equivalent to the lowest-order pseudoenergy conservation

law dE(2)
W /dt+ dC(2)

W /dt = 0. However, in order to evaluate the variation of the mean

flow energy E(2)
M it is necessary to know the O

(
a2
)

fields, whereas the wave Casimir

C(2)
M is a functional of only the O (a) perturbation (McIntyre & Shepherd 1987; Ripa

1992b).
For the case (3.4), the wave rectification produces a mean-flow variation Q′ ≡ 0

(because β = 0) and

Q′± (y, t) = ± 1
4
|aq̂+|2 lL2U−1

s sin 2ly
(
e2k Im ct − 1

)
;

the corresponding streamfunction Ψ (y, z, t) is obtained from equations (A 4) and
(A 6). In order to use equation (5.2) for the rate of change of the perturbation energy,
note that q′ = 0 and v′±q′± = ∓ 1

4
|aq̂+|2 U−1

s L2 (2k Im c) sin2 ly e2k Im ct. From (5.2) it
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Figure 8. Energy partition of growing perturbations into kinetic
∫∫∫

(∇ψ′)2, internal potential∫∫∫
f2

0N
−2 (∂zψ

′)2, and external potential
∫∫
f2

0g
−1
b (ψ′)2 |z=−Hr .

follows that dE(2)
W /dt = 1

8
L2 |aq̂+|2 (2k Im c) e2(k Im c)t; by simple integration in time it is

then found that

E(2)
W = 1

2
〈b(∇ψ′)2 + f2

0N
−2
r (∂zψ

′)2ez + f2
0g
−1
b ψ

′2
−〉

= 1
8
L2 |aq̂+|2 e2(k Im c)t.

A more tedious calculation gives the partition of this energy into its three parts
(kinetic, internal potential, and external potential) as [A− B,A+ B, 1− 2A] × E(2)

W ,
where A = τ(s+ κ2)/[2κ(κτ+ s)] and B = [s+ (2− ν − s)τκ− κ2]/[2(κτ+ s)]. Notice
that the fraction of external potential energy, 1− 2A, is independent of ν.

Figure 8 shows how is the energy partitioned in a growing perturbation. At
low wavenumbers, near the long-perturbation cutoff, the energy is mostly internal
potential (and not kinetic, as classical descriptions of baroclinic instability account),
whereas at high wavenumbers, near the short-perturbation cutoff, kinetic energy is
also important. As s → 0, the maximum fraction of external potential energy equals
s/3 and it is reached at κ =

4
√

15s. On the other hand, at strong stratifications, s� 1,
most of the perturbation energy is concentrated in this form, i.e. on the deformation
of the interface. This is consistent with the results of § 4, where it was shown that the
effect of the perturbation on the interface is more important for finite s.

6. Conclusions
The upper part of the ocean displays a myriad of processes, not all of them fully

understood yet. A vertically well mixed (by, say, the wind action) but horizontally
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inhomogeneous layer restratifies through the radiation of Poincaré waves (Tandon
& Garrett 1995). The mean current that results from this process might, in turn,
be baroclinically unstable, leading to a nonlinear process that could favour the
subsequent mixing of the layer (Haine & Marshall 1998). This scenario is one of
the motivations that leads towards the study of nonlinear baroclinic instability in a
reduced-gravity model (i.e. with a soft lower boundary). The f-plane normal mode
solution found by Fukamachi et al. (1995) and further generalized by Beron-Vera &
Ripa (1997) has been thoroughly analysed here, by considering all possible values
of the interior stratification s (relative to the buoyancy jump at the interface) and
interface slope ν (relative to the isopycnals basic slope; these parameters are defined
in equation (3.5)). For wavenumbers close to the short-wave cutoff κS (ν, s), an
important fraction of the mean flow energy is converted into ‘external’ potential
energy of the perturbation, unless the internal stratification s is very small. For
wavenumbers near the long-wave cutoff κL (ν, s), on the other hand, most of the
perturbation energy is internal potential. It would be interesting to investigate the
importance of this wavenumber dependence of the structure of growing perturbations
on processes like the gas exchange with the deep ocean, discussed by Haine & Marshall
(1998).

In order to apply this model to a more realistic situation, other processes need to
be incorporated. For instance, the second layer may be allowed to be active, and then
(2.6) for qn = q− becomes the matching condition between both layers. Buoyancy flux
at the surface and entrainment of lower layer water can be modelled as forcing terms
in the right-hand side of model equations (2.6). The curl of wind stress can enter as
Ekman pumping in (2.6) for qn = q+ or as a body force in the vorticity equation (2.6)
for qn = q. The interplay of these forcing mechanisms and the baroclinic instability
process discussed here constitutes an important problem which goes beyond the goals
of the present paper.

This work has been supported by CICESE core funding and by CONACyT
(Mexico) under grants 1799P-T, 1890P-T, and 26670-T. Critical reading of the
manuscript by J. Sheinbaum, O. Velasco, J. Ochoa and J. Beron-Vera is sincerely
appreciated. Dr Mu Mu called my attention to the formal similarities between the
model developed here and that of White (1977), and Dr Jonas Nycander did likewise
with the paper of Achterberg & Ingersoll (1989).

Appendix. Evaluation of the streamfunction as a functional of the
prognostic fields

Let δq (x, z, t), δq± (x, t), and δγi (z) be arbitrary perturbation fields in the channel
0 < y < W . In order to calculate the corresponding streamfunction perturbation
δψ (x, z, t) the primary fields are expanded as

δq (x, z, t) =
∑
k,l,m

qk,l,m (t) eikx sin ly Fm (z) ,

δq± (x, t) =
∑
k,l

q
k,l
± (t) eikx sin ly,

δγi (z) =
∑
m

γmi Fm (z) ,


(A 1)
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where l = nπ/W and

Fm (z) =

√
2µ2

m + 2s2

µ2
m + s2 + s

cos
µmz

Hr

, (A 2)

with µm tan µm = s (mπ < µm <
(
m+ 1

2

)
π), are the vertical structure functions of the

Rossby waves for β 6= 0 and Ub = 0 (Ripa 1995). (The normalization constant gives
the orthogonality conditions bFmFrez = δmr and H2

r bF ′mF ′rez + s (FmFr)− = µ2δmr .)

First, the contribution of δq to the streamfunction is written as

δψ (x, z, t) = −L2
∑
k,l,m

(
κ2 + µ2

)−1
qk,l,m (t) eikx sin ly Fm (z) , (A 3)

where κ =
√
k2 + l2L. Similarly, the contribution of δq± to the streamfunction takes

the form

δψ(x, z, t) = L2
∑
k,l

[qk,l+ (t)Gκ+ (z) + q
k,l
− (t)Gκ− (z)]eikx sin ly

G+ (z) = − (κ+ τs) cosh
(
κz/Hr

)
(τκ+ s) κ

− sinh
(
κz/Hr

)
κ

,

G− (z) = − cosh
(
κz/Hr

)
(τκ+ s) cosh κ

,


(A 4)

where τ = tanh κ. The G± and the Fm are not orthogonal; the contribution of the three
diagnostic fields can be grouped in the form δψ(x, z, t) =

∑
k,l,m ψk,l,m (t) eikx sin ly Fm

(z), with

ψk,l,m (t) = −L2
(
κ2 + µ2

)−1
[qk,l,m (t) + Fm+q

k,l
+ (t) + Fm−q

k,l
− (t)], (A 5)

where Fm+ = Fm (0) and Fm− = Fm (−Hr). Now, a term ψk,l,m (t) eikx sin ly Fm (z) does not
satisfy the constraint of constant Kelvin circulation for k = 0. Therefore, to the k = 0
part of the above expansion must be added

δψ (x, z, t) = · · ·+∑
l,m

ψ0,l,m (t)
lL

µ

e−µy/L ∓ e−µ(W−y)/L

1± e−µW/L
Fm (z) , (A 6)

where cos lW = ±1. Finally, the contribution of δγi to the streamfunction is of the
form

δψ (y, z) =
∑
m,±

L

2µ

(
γm1 ± γm2

) e−µy/L ∓ e−µ(W−y)/L

1± e−µW/L
Fm (z) . (A 7)

Notice that the corrections terms in (A 6) as well as (A 7) correspond to pressure and
velocity fields identical to those of a superposition of coastally trapped Kelvin waves,
with k = 0.

An alternative description of the k = 0 cases is use δq =
∑
. . . cos ly, for which the

δψ =
∑
. . . cos ly has a vanishing circulation. However, this expansion converges less

rapidly than the one presented here.
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